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God is a mathematician of a very high order — P. Dirac



What is Kepler Problem？

It is a mathematical model for the simplest solar system.
I. Newton introduced and solved it in 1678, and that leads to a
good explanation for Kepler’s three laws of planetary motion.
It is also a mathematical model for the simplest atom (i.e. the
hydrogen atom).
E. Schrödinger introduced and solved it (at the quantum level) in
1926, and that leads to a good explanation for the spectral lines of
the hydrogen gas and Mendeleev’s periodic table for elements as
well.
It is a classical example of combining beauty, simplicity and truth
all in one.
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A few more quotes on beauty, simplicity and truth

1 Beauty is the first test: there is no permanent place in the world
for ugly mathematics. — Godfrey Harold Hardy

2 Everything should be made as simple as possible, but not simpler.
— Albert Einstein

3 My work always tried to unite the truth with the beautiful, but when
I had to choose one or the other, I usually chose the beautiful. —
Hermann Weyl
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What are Lorentz Transformations？
They are the linear transformations of the form

t = γ(t ′ +
vx ′

c2 ), x = γ(x ′ + vt ′), y = y ′, z = z ′

for the time and (rectangular) space coordinates in two inertial
frames:

Here c is the speed of light and γ = 1√
1− v2

c2

.

They are the correction to the Galileo transformations:

t = t ′, x = x ′ + vt ′, y = y ′, z = z ′.

They leave c2t2 − x2 − y2 − z2 invariant.
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They (not Galileo transformations) leave invariant of the form of
Maxwell equations for electromagnetism.
The attempt to understand their geometric/physical meaning led to
the relativity revolution in the early 20th century, including, among
other things, the relativistic correction to Newtonian mechanics as
well as various relativistic corrections to the Universal Gravitation
Law, with Einstein’s General Theory of Relativity being the favorite
one.
First published by Joseph Larmor in1897 and independently again
by Hendrik Antoon Lorentz in 1899.
In mathematics, any linear transformation T : R4 → R4 that
preserves the Lorentz inner product:

(x0,x) · (y0,y) = x0y0 − x · y

is called a Lorentz transformation. Then Lorentz transformations
form a group, i.e., the Lie group O(1,3). For simplicity, we shall
write x for (x0,x), x2 for x · x . So x2 = x2

0 − x · x.

Guowu Meng (HKUST) Lecture I Fall 2015 7 / 18



They (not Galileo transformations) leave invariant of the form of
Maxwell equations for electromagnetism.
The attempt to understand their geometric/physical meaning led to
the relativity revolution in the early 20th century, including, among
other things, the relativistic correction to Newtonian mechanics as
well as various relativistic corrections to the Universal Gravitation
Law, with Einstein’s General Theory of Relativity being the favorite
one.
First published by Joseph Larmor in1897 and independently again
by Hendrik Antoon Lorentz in 1899.
In mathematics, any linear transformation T : R4 → R4 that
preserves the Lorentz inner product:

(x0,x) · (y0,y) = x0y0 − x · y

is called a Lorentz transformation. Then Lorentz transformations
form a group, i.e., the Lie group O(1,3). For simplicity, we shall
write x for (x0,x), x2 for x · x . So x2 = x2

0 − x · x.

Guowu Meng (HKUST) Lecture I Fall 2015 7 / 18



They (not Galileo transformations) leave invariant of the form of
Maxwell equations for electromagnetism.
The attempt to understand their geometric/physical meaning led to
the relativity revolution in the early 20th century, including, among
other things, the relativistic correction to Newtonian mechanics as
well as various relativistic corrections to the Universal Gravitation
Law, with Einstein’s General Theory of Relativity being the favorite
one.
First published by Joseph Larmor in1897 and independently again
by Hendrik Antoon Lorentz in 1899.
In mathematics, any linear transformation T : R4 → R4 that
preserves the Lorentz inner product:

(x0,x) · (y0,y) = x0y0 − x · y

is called a Lorentz transformation. Then Lorentz transformations
form a group, i.e., the Lie group O(1,3). For simplicity, we shall
write x for (x0,x), x2 for x · x . So x2 = x2

0 − x · x.

Guowu Meng (HKUST) Lecture I Fall 2015 7 / 18



They (not Galileo transformations) leave invariant of the form of
Maxwell equations for electromagnetism.
The attempt to understand their geometric/physical meaning led to
the relativity revolution in the early 20th century, including, among
other things, the relativistic correction to Newtonian mechanics as
well as various relativistic corrections to the Universal Gravitation
Law, with Einstein’s General Theory of Relativity being the favorite
one.
First published by Joseph Larmor in1897 and independently again
by Hendrik Antoon Lorentz in 1899.
In mathematics, any linear transformation T : R4 → R4 that
preserves the Lorentz inner product:

(x0,x) · (y0,y) = x0y0 − x · y

is called a Lorentz transformation. Then Lorentz transformations
form a group, i.e., the Lie group O(1,3). For simplicity, we shall
write x for (x0,x), x2 for x · x . So x2 = x2

0 − x · x.

Guowu Meng (HKUST) Lecture I Fall 2015 7 / 18



Plan

A brief review of the Kepler problem
Magnetized Kepler problems
A new description of the orbits
The future light cone
Kepler problem and Lorentz transformations
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A brief review of the Kepler problem
Confuguration space: R3

∗ := R3 \ {0}.
Equation of Motion:

r′′ = − r
r3 . (1)

Angular Momentum L := r× r′ is conserved:

L′ = r′ × r′ + r× r′′ = r×
(
− r

r3

)
= 0.

Guowu Meng (HKUST) Lecture I Fall 2015 9 / 18



A brief review of the Kepler problem
Confuguration space: R3

∗ := R3 \ {0}.
Equation of Motion:

r′′ = − r
r3 . (1)

Angular Momentum L := r× r′ is conserved:

L′ = r′ × r′ + r× r′′ = r×
(
− r

r3

)
= 0.

Guowu Meng (HKUST) Lecture I Fall 2015 9 / 18



A brief review of the Kepler problem
Confuguration space: R3

∗ := R3 \ {0}.
Equation of Motion:

r′′ = − r
r3 . (1)

Angular Momentum L := r× r′ is conserved:

L′ = r′ × r′ + r× r′′ = r×
(
− r

r3

)
= 0.

Guowu Meng (HKUST) Lecture I Fall 2015 9 / 18



Lenz vector A := L× r′ + r
r is conserved:

A′ = L× r′′ +
( r

r

)′
= −(r× r′)× r

r3 +
( r

r

)′
= − r2r′ − rr ′r

r3 +
( r

r

)′
= 0.
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Orbits. Since L = r× r′， A = L× r′ + r
r , we have L · A = 0

and

L · r = 0, r − A · r = |L|2, (2)

So a non-colliding orbit is a conic with eccentricity e equal to |A|:
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Total energy. Assume the orbit is non-colliding (i.e. L 6= 0)，then
the total energy E := 1

2 |r
′|2 − 1

r can be expressed in terms of L
and A:

E = −1− |A|2

2|L|2
. (3)

Proof.

|A|2 = |L× r′|2 + 2
r · (L× r′)

r
+ 1

= |L|2|r′|2 − 2
|L|2

r
+ 1

= 2|L|2E + 1.

So E = −1−|A|2
2|L|2 .
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Magnetized Kepler Problems
Magnetized Kepler problems were introduced towards the end of
1960s, by H. McIntosh and A. Cisneros, and independently by D.
Zwanziger, so they are called MICZ-Kepler problems.
They are the mathematical models for the hypothetical hydrogen
atoms for which the nucleus carries magnetic charge as well.
Their configuration spaces are all the same: R3

∗ := R3 \ {0}.
For the hypothetical hydrogen atom whose nucleus carries
magnetic charge µ, its equation of motion is

r′′ = − r
r3 − r′ × µ r

r3+
µ2

r4 r (4)

Conserved quantities are angular momentum L := r× r′ + µ r
r and

Lenz vector A := L× r′ + r
r .

The Kepler problem is the MICZ-Kepler problem with magnetic
charge zero.
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It is easy to see that L · A = µ, and

L · r = µr , r − A · r = |L|2 − µ2. (5)

Eq. (5) gives an algebraic description for the orbits, from which,
we deduce that there are four types of orbits: linear, elliptic,
parabolic, and hyperbolic.

Exercise1：For conic(5), please express its eccentricity in terms of L,
A and µ.
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A new description for the orbits
The preceding set of algebraic equations can be rewritten as

µr − L · r = 0, r − A · r = |L|2 − µ2. (6)

Assume that the orbit is non-collding, i.e. |L|2 − µ2 = |r× r′|2 > 0.
Then, we can introduce 4-D Lorentz vectors

l =
1√

|L|2 − µ2
(µ,L), a =

1
|L|2 − µ2 (1,A), x = (r , r) (7)

so that Eq. (6) can be rewritten as

l · x = 0, a · x = 1. (8)

It is easy to see that l2 = −1, l · a = 0, a0 > 0, and

E = − a2

2a0
.

Remark：Eq. (8) is for r ∈ R3
∗, but it is also for x ∈ R4 provided that x

is on the future light cone.
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Exercise 2：Please describe the linear orbits on the future light cone.
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Future light cone in the 3-D Lorentz space
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Kepler Problem and Lorentz Transformations
MICZ-Kepler orbit — a non-colliding orbit in a MICZ-Kepler problem.
There are three types: elliptic, parabolic, and hyperbolic.

little Lorentz transformation — a little linear transformation T from R4

to R4 which preserves the Lorentz inner product. Here “little” means
that T can be continuously deformed to the identity map on R4.

scaling transformation — the scalar multiplication of vectors in R4 by a
positive real number.

Theorem (G. Meng, J. Math. Phys. 53, 052901(2012))
1) Any two oriented parabolic MICZ-Kepler orbits can be transformed
from one to the other via a little Lorentz transformation.
2) Any two oriented elliptic MICZ-Kepler orbits can be transformed
from one to the other via a little Lorentz transformation together with a
scaling transformation.

Remark. 1) A second temporal dimension (i.e. x0) appears naturally.
2) The magnetic charge µ is relative.
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from one to the other via a little Lorentz transformation.
2) Any two oriented elliptic MICZ-Kepler orbits can be transformed
from one to the other via a little Lorentz transformation together with a
scaling transformation.

Remark. 1) A second temporal dimension (i.e. x0) appears naturally.
2) The magnetic charge µ is relative.
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